
Journal of Sound and <ibration (2001) 244(4), 615}634
doi:10.1006/jsvi.2000.3497, available online at http://www.idealibrary.com on
PERFORMANCE EVALUATION OF MULTICHANNEL
ADAPTIVE ALGORITHMS FOR LOCAL ACTIVE

NOISE CONTROL

M. DE DIEGO AND A. GONZALEZ

Department of Communicaciones, ;niversidad Politecnica de <alencia, Camino de <era s/n,
E-46022, <alencia, Spain. E-mail: mdediego@dcom.upv.es

(Received 4 November 1999, and in ,nal form 8 August 2000)

This paper deals with the development of a multichannel active noise control (ANC)
system inside an enclosed space. The purpose is to design a real practical system which
works well in local ANC applications. Moreover, the algorithm implemented in the adaptive
controller should be robust, of low computational complexity and it should manage to
generate a uniform useful-size zone of quite in order to allow the head motion of a person
seated on a seat inside a car. Experiments were carried out under semi-anechoic and
listening room conditions to verify the successful implementation of the multichannel
system. The developed prototype consists of an array of up to four microphones used as
error sensors mounted on the headrest of a seat place inside the enclosure. One loudspeaker
was used as single primary source and two secondary sources were placed facing the seat.
The aim of this multichannel system is to reduce the sound pressure levels in an area around
the error sensors, following a local control strategy. When using this technique, the
cancellation points are not only the error sensor positions but an area around them, which is
measured by using a monitoring microphone. Di!erent multichannel adaptive algorithms
for ANC have been analyzed and their performance veri"ed. Multiple error algorithms are
used in order to cancel out di!erent types of primary noise (engine noise and random noise)
with several con"gurations (up to four channels system). As an alternative to the multiple
error ¸MS algorithm (multichannel version of the ,ltered-X ¸MS algorithm, MELMS), the
least maximum mean squares (LMMS) and the scanning error-¸MS algorithm have been
developed in this work in order to reduce computational complexity and achieve a more
uniform residual "eld. The ANC algorithms were programmed on a digital signal processing
board equipped with a TMS320C40 #oating point DSP processor. Measurements
concerning real-time experiments on local noise reduction in two environments and at
frequencies below 230 Hz are presented. Better noise levels attenuation is obtained in the
semianechoic chamber due to the simplicity of the acoustic "eld. The size of the zone of quiet
makes the system useful at relatively low frequencies and it is large enough to cover
a listener's head movements. The spatial extent of the zones of quiet is generally observed to
increase as the error sensors are moved away from the secondary source, they are put closer
together or its number increases. In summary, di!erent algorithms' performance and the
viability of the multichannel system for local active noise control in real listening conditions
are evaluated and some guidelines for designing such systems are then proposed.

( 2001 Academic Press
1. INTRODUCTION

Active noise control (ANC) is a "eld of growing interest that combines digital signal
processing techniques with traditional acoustics. ANC systems attempt to reduce the noise
by generating an antinoise that cancels out the "rst one [1, 2]. In a structure like a duct,
with only one relevant dimension, it is relatively easy to cancel travelling waves by placing
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a secondary source of sound in a point of the duct and producing a destructive interference.
A good level of attenuation can be achieved from the interference point onwards.
Nevertheless, it is harder to cancel noise inside an enclosure because of the appearance of
stationary waves. Those tri-dimensional stationary waves are known as the acoustic modes
of the enclosure. The higher the working frequency the larger the number of acoustic modes
excited [3]. There are points inside the enclosure where some modes cannot be excited and
therefore these modes cannot be detected at these points. These null points are placed at
di!erent positions for each mode. Since practical active control systems interact with the
system under control at certain points belonging to the real space, it is very di$cult to
achieve good results in an enclosure by using a single channel ANC system. The use of
several sources and sensors avoids these problems by introducing some degree of spatial
diversity. A way to control actively a noise in an enclosure consists in trying to minimize the
whole acoustic potential energy [2]. This potential energy is proportional to the volume
integral of the sound pressure mean square value. Sound pressure at low frequencies can be
represented by a combination of a given number of acoustic modes. A good estimate of
the acoustic potential energy in the enclosure could be the sum of the mean square pressures
measured at many di!erent points in the room. The quality of this approach depends on
the location and number of sensors that have been used, since it should be possible to
measure the contributions of all the relevant modes at the working frequencies by increasing
this number. For example, in a rectangular enclosure it would be advisable to place the
sensors, and also the cancelling sources, near the corners, since all the modes have
a maximum there.

When the number of sensors is large enough, the multichannel system is able to reduce
the acoustic potential energy in the enclosure. The strategy is known as global control. If the
number of sensors is smaller then it will be possible to reduce the sound pressure in an area
around the sensors; however, the noise levels could even increase outside this area [2, 4].
This strategy, which is called local control, is a low-cost solution that is acceptable in some
ANC applications [5]. For example, when considering the interior space of an automobile,
noise reduction is required only in the space where the heads of driver and passengers are
normally located. Quiet zones have been evaluated in the literature and they have typically
a diameter larger than a quarter of the working wavelength. At low frequencies, these zones
of quiet are large enough for covering lateral and forward listener's head movements [6].
However, it is important to optimize the number and location of the secondary
loudspeakers and error sensor microphones in order to maximize the size of the quiet zones.
It is also convenient to analyze the residual "eld distribution in the cancellation zone, since
it can be shown that uniformity of the residual "eld improves the comfort sensation.
Therefore, a local control strategy has been applied to the ANC system presented here and
two characteristics of the acoustic "eld have been mainly evaluated: extension of the quiet
zone after control and uniformity of the residual "eld.

In order to look for an algorithm which was robust, of low computational complexity
and that provides useful-size zones of quiet, three di!erent adaptive signal processing
algorithms for active noise control have been considered in this paper. These algorithms are:
multichannel ,ltered-X LMS (commonly named MELMS) [7], least maximum mean
squares (LMMS) [8] and scanning error-¸MS [9] algorithms. They are steepest
descent-type algorithms and, as it happens with LMS, they have shown to be robust and
have good tracking capabilities. The multichannel "ltered-X LMS algorithm can be
considered the most representative of this kind because it is widely used. It minimizes the
sum of the squares of the measured signals. This strategy produces a residual acoustic "eld
in the enclosure that can have large di!erences between the values of its maximum and
minimum levels. In most applications, a more uniform acoustic "eld is desired, since
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a di!erence of levels could be easily perceived by a person walking inside a room. As an
alternative to this algorithm, least maximum mean squares and scanning error-LMS
algorithms have been developed and applied in this work in order to reduce computational
complexity. Moreover, LMMS can achieve in some cases a more uniform residual "eld [10,
11]. All the algorithms have been tested in the same real conditions.

The complexity of LMMS and scanning error-LMS algorithms is signi"cantly smaller
than those of other adaptive "ltering algorithms such as the recursive least squares (RLS)
type algorithms or the least squares lattice (LSL) algorithm, which can increase convergence
rate with random noise signals. A block processing technique has been recently proposed to
reduce computational complexity of the MELMS algorithm, see reference [12], being under
development in multichannel con"guration. Recent literature has shown some examples of
active noise control systems: in reference [13] a multichannel LSL algorithm is proposed to
control road noise inside a car and in reference [14] a multichannel system with
feedback}feedforward con"guration based on the "ltered-X LMS algorithm can be found.
Unfortunately, both papers present only simulations, but not practical results. In reference
[15] an approach to simulate the performance of ANC systems using "ltered-X type
algorithms is developed. An interesting work related to experiments in personal sound
(di!erent sound zones are required for di!erent listeners in the same room), including
local active noise control with a multichannel "ltered-X LMS algorithm, is presented in
reference [16].

The application of the "ltered-X LMS, LMMS and scanning error-LMS algorithms in
a multichannel system is in-depth investigated in this work by means of analytical results
and laboratory experiments. The practical system implemented in the laboratory is
also described. This system is designed to control noise around the headrest of a seat.
Some of the practical aspects of its implementation are also considered: appropriate
positioning of the secondary loudspeakers and error microphones, performance in di!erent
acoustic environments (di!erent rooms and di!erent noise disturbances) and sampling
rate. The paper shows some results concerning real-time experiments on local noise
reduction with random noise and engine noise as primary signal when using di!erent
con"gurations of loudspeakers and microphones and the aforementioned algorithms.
The quiet zones are presented. Results show that quiet zones are large enough to
allow slight head movements of the seated person without signi"cant performance
degradation.

The paper proceeds as follows: section 2 describes the multichannel adaptive algorithms
used in the controller; the local active noise control prototype is described in section 3 and
"nally, the experimental results are reported in section 4.

2. MULTICHANNEL ADAPTIVE ALGORITHMS FOR ACTIVE NOISE CONTROL

Steepest descent algorithms are often applied to real-time systems and they have been
widely used for active control. These iterative algorithms update the parameters of the
controller following the direction of the negative gradient vector (that is in the direction of
steepest descent with respect to these parameters of the error-performance surface) [10, 17].
The following algorithms have been developed based on the steepest-descent method and
the stochastic gradient approach as shown in reference [10].

Multichannel ,ltered-X ¸MS algorithm. Least mean squares (LMS) algorithm minimizes
the instantaneous signal error power; its active noise control version is called the ,ltered-X
¸MS algorithm [18]. The multichannel ,ltered-X ¸MS algorithm is commonly called the
multiple error ¸MS (MELMS) [7].



Figure 1. Multichannel pure feedforward ANC system. The system has M secondary sources, K reference
signals and ¸ error sensors (De-Diego and Gonzalez).
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Scanning error-¸MS algorithm. This algorithm, which was proposed in reference [9],
appears as a computationally e$cient version of the LMS algorithm. It updates the control
"lter weights using only a number of error signals at each algorithm iteration. It has been
studied in reference [19].

¸east maximum mean squares algorithm. This algorithm, denoted as LMMS, strives to
reduce the error signal with maximum level. It belongs to a kind of algorithm called
minimax type which was studied in references [8, 10, 11]. The aim behind a minimax-type
algorithm in active control is to balance the acoustic "eld after control. To achieve this, it is
needed to de"ne "rst which measure of the acoustic "eld must be balanced and then apply
a minimax strategy of minimization using this measure. When the maximum of the mean
squared values of the error signals is minimized, the algorithm is called least maximum
mean squares (LMMS).

2.1. MULTICHANNEL FILTERED-X LMS ALGORITHM (MELMS)

The multichannel version of the "ltered-X LMS algorithm is called the multiple error
LMS algorithm (MELMS) [6, 7]. A system with K reference signals, M secondary sources
and ¸ error sensors as in reference [20] will be considered. Figure 1 shows the block
diagram of this model. Block C represents a matrix of ¸]M error paths (transfer functions
from each secondary source to each error sensor) and block W is a matrix of K]M control
"lters that are designed to minimize the sum of the squares of ¸ error sensor outputs (the
system under control is considered time invariant). Primary noise is actively cancelled out
by using the M secondary signals which are fed by the K]M adaptive "lters. The output of
the lth error sensor can then be written as
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where d
l
[n] is the primary noise at the lth error sensor, c
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is the jth coe$cient of the

impulse response from the mth secondary source to the lth error sensor. The last summation
represents the kth reference signal "ltered through the corresponding adaptive "nite
impulse response "lter of I coe$cients. Equation (1) illustrates the linear relationship
between the error signal and the controller coe$cients and can also be expressed in matrix
form as
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where R[n] is the "ltered reference signals matrix. Parameters involved in equation (1) are
de"ned as
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The optimum value of the coe$cient vector w minimizes the cost function
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where E[)] denotes an expected value. If the reference signal x
k
[n] is correlated with d[n], it

is possible to reduce the value of J by driving the secondary sources by a "ltered version of
the reference signal. Since the gradient vector of the cost function is di$cult to calculate in
practice, the optimum set of "lters coe$cients required to minimize equation (8) may be
evaluated iteratively by using the steepest descent algorithm which uses a stochastic
estimation of the cost function gradient vector,
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l
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l
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where a is the convergence parameter and R
l
[n] corresponds to the lth row of the "ltered

reference signals matrix R[n].
Two of the best-known applications of the multiple error LMS algorithm are the control

of boom noise in cars [21] and the control of propeller-induced noise in #ight cabin interiors
[22]. An interesting convergence analysis of the MELMS algorithm has been reported in
reference [23]. Alternative methods for reducing the computational complexity and
memory requirements of the multichannel adaptive controller have also been developed
[24, 25].
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2.2. LEAST MAXIMUM MEAN SQUARES (LMMS) ALGORITHM

A more general cost function than the previous one, equation (8), can be derived from the
error signals. This cost function is the p-norm of a vector composed of these signals, (see
reference [10]):

J
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l/1
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l
[n]DpD . (10)

Di!erent values of the parameter p lead one from the minimization of the sum of the
squares, p"2 (which gives the MELMS algorithm), to the minimization of the maximum
measured signal at each n, in the limiting case with p tending to R. A more uniform
residual "eld can be obtained for larger values of p. The study here is focussed on the
limiting case, in which only one of the error signals is used in the algorithm's calculations at
each n. Therefore, the computational load can also be reduced. A closed expression for the
coe$cients vector which minimizes equation (10) does not seem to exist for the general case,
but does exist for p"2 which provides the MELMS cost function. In any case, an iterative
expression to minimize J

p
based on a steepest descent method can be used to reach this

optimum. The true gradient vector of the cost function is approximated by a stochastic
estimation. The stochastic gradient vector is then given by
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An iterative algorithm to minimize equation (10) is built by using the stochastic gradient
de"nition in equation (11),
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where sign(.) is the sign function. When p"2 equation (12) becomes
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which is, as was expected, the same iterative expression as the de"nition of the multiple
error LMS algorithm; see equation (9).

The limiting case, pPR, has in general no sense with equation (11). The point is that the
sum of the R order moments of the error signals is not what really must be minimized. The
minimax type algorithms in active control try to balance the acoustic "eld after control by
applying a minimax strategy of minimization. A cost function de"nition that takes into
account the last discussion is
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where q'0 is a parameter which can be selected to change the error signals measure. This
measure is given in equation (14) by the error signals q order moments. Subscript b selects
between the error signals, 1)l)¸, the one with larger q order moment. It is interesting to
note that the value of subscript b depends on the current value of the coe$cients vector w;
a change of this vector could imply a change of the value of b. The instantaneous value of
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equation (14),
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is used to obtain the stochastic gradient of the cost function,
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It has really practical sense for the case with q"2 since the second order moments of the
error signals are easily related to physical quantities whose mean squared value has
practical sense. That is the main idea of the least maximum mean squares algorithm,
LMMS. The LMMS algorithm [11] is an iterative steepest-descent algorithm that
minimizes the maximum of the mean squared value of the error signals. This fact implies
that the algorithm works with as many error-performance surfaces as error sensors. To "nd
the minimum value of the maximum mean squared error the algorithm is descending for
only one error-performance surface, a di!erent one depending on which error sensor gives
the maximum power at each algorithm iteration. The stochastic cost function consists of the
instantaneous maximum value of the error signals as follows (see equation (15) with q"2):

J[n]" max
1)l)L

M(e
l
[n])2N"(e

b
[n])2. (17)

Therefore, upon using the stochastic gradient the update weights equation is given by
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where subscript b denotes the error signal with maximum squared value for a given value of
the control vector. Equation (18) is quite similar to equation (9); however, summation over
all the error sensors in equation (9) has disappeared in equation (18), and consequently
a signi"cant computational saving from this point of view has been obtained. However,
a comparison between the error signal magnitudes has to be additionally carried out. This
fact means that the LMMS algorithm has to "nd out which of the error signals have the
maximum estimated mean power, although there exist e$cient methods for this calculation.
In this work, the mean power of the error signals was calculated by means of an IIR "ltering
of the error powers [11] as follows,
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where the parameter a is called the forgetting factor and it is typically chosen as
0)91)a)0)94. It is important to note that, even though the algorithm update equations
are similar, MELMS and LMMS do not minimize the same cost function. Therefore,
a di!erent residual acoustic "eld after cancellation can be expected.

2.3. SCANNING ERROR-LMS ALGORITHM

The scanning error-LMS algorithm is an e$cient version of the MELMS algorithm that
also allows computational savings. It has been shown that this algorithm converges to the
same solution as the MELMS under certain conditions [9, 19]. However, this algorithm,
similar to the LMMS, can work using only one error signal at each algorithm iteration. This



TABLE 1

Computational complexity (Operations per Sample) in a 1]M]¸ multichannel ANC system
using the ME¸MS, ¸MMS and scanning error-¸MS algorithms

MELMS LMMS Scanning

Multiplications ((JI#1)L#1)M (JI#2)M#3L (JI#2)M
Additions ((J!1)IL#1)M ((J!1)I#1)M#2L ((J!1)I#1)M
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error signal is chosen in turn (unlike LMMS which minimizes the maximum instantaneous
power signal). The instantaneous cost function is de"ned as

J[n]"(e
b
[n])2, (20)

where the error signal index b is de"ned as b"n#1 mod ¸, so the error signals are
scanned in turn. When the number of error sensors is large, the number of operations in the
MELMS algorithm grows considerably. On the other hand, there does not exist this
dependence of computational load on the number of sensors when the scanning error-LMS
is used. It can be shown that by using equation (20) the update equation of the adaptive
"lters for the scanning error-LMS algorithm is given by

w[n#1]"w[n]!kRT
b
[n]e

b
[n]. (21)

Due to the update equation similarities, resemblance between LMMS and scanning
error-LMS algorithm can be expected during their convergence times. More details can be
found in references [10, 26]. The computational complexity of the miltichannel ANC
systems using the algorithms mentioned above is compared in Table 1. It is shown that
multichannel con"gurations using the scanning error-LMS algorithm require much fewer
operations per sampling period than those using the MELMS. The LMMS algorithm
computational load depends on the number of error sensors. Its e$ciency decreases as the
number of error sensors increases due to the calculation of the error signal powers. For few
error sensors, the computational load of the LMMS is comparable to that of the scanning
error-LMS.

3. PROTOTYPE DESCRIPTION

A local active noise control system was used in the experiments. This ANC system was
tested in two di!erent acoustic environments: a rectangular enclosure with internal
dimensions 4)35 m]3)28 m]2)96 m and a semi-anechoic chamber. The impulse responses
and the transfer functions between two points of the two environments can be seen in
Figure 2. O!-line modelling of the error signal paths are used in the experiments.
Multichannel o!-line modelling of error paths is a di$cult task because of the acoustical
coupling between the individual channels. Therefore, only one error path from one of the
loudspeakers to one of the microphones can be estimated at a time. However, the error
paths are time-varying due to the temperature variations and movement of objects.
Consequently, on-line modelling of this error path could be considered for automotive
application. The acoustic "eld will be more uniform in the semi-anechoic chamber than in
the listening (real) room, due to its #atter frequency response compared to the real room



Figure 2. Examples of impulse and frequency responses between two points inside the environments used in the
experiments: (a) and (c) real room and (b) and (d) semi-anechoic chamber. Sampling rate 500 Hz (De-Diego and
Gonzalez).
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one, which is quite abrupt. This character will make cancellation easier in the semi-anechoic
environment.

For the results presented here, three 210 mm-diameter loudspeakers were used, a single
one acted as primary source and the other loudspeakers were used as control sources. In the
rectangular listening room, primary source was located at position (0)85, 1)5, 1) m and
secondary source were located at positions (2)4, 2)3, 1)3) m and (2)4, 0)75, 1)3) m. A seat was
placed at position (3)25, 1)6, 1)2) m, facing the primary source, and an array of up to four
microphones was counted on the headrest of a seat, as shown in Figure 3. Pairs of error
sensors are maintained at a distance between them given by S

x
, S

y
and S

z
in the x, y and z

co-ordinates respectively. The microphones and loudspeakers arrangement shown in
Figure 3 is mainly used in the experiments. However, some other arrangements have also
been used to test the performance of other con"gurations.

The working frequency range was 40}150 Hz in the rectangular enclosure and
40}230 Hz in the semi-anechoic chamber, since wider control bandwidth increased
the number of adaptive control "lters weights beyond our processing capabilities.
Car engine noise (periodic noise) and random noise (broadband noise) were chosen as
disturbances.

The ANC control algorithm was programmed on a digital signal processing (DSP) board
equipped with a #oating point DSP processor. The DSP board was mounted on a PC
computer, which serves as a development system of the DSP board. The sampling rate was
"xed at 500 Hz. All convergence rates in the experiments were adjusted to their optimal
values so that the fastest convergence speed was achieved. Measurements obtained in both
cases and for di!erent transducers con"gurations show meaningful reductions in noise level
at the sensor positions and the area around them.



Figure 3. (a) Setting position of sources in the reverberant room; (b) seat and microphones layout (De-Diego
and Gonzalez).
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4. EXPERIMENTS

Experiments were carried out in the aforementioned environments. Di!erent
con"gurations have been chosen to demonstrate the ability of the ANC system to create
zones of quiet. Since quiet zones are volumes in space, results are shown at di!erent height
planes (di!erent z co-ordinates). Zones of quite are obtained by sampling an area of
approximately 700]500 mm2 around the headrest of the seat with a monitor microphone.
The objective was to obtain a large enough zone of quiet centered in the listener's head
position. The e!ect of active control has been also evaluated in terms of the power spectral
density of the signal measured at the system error sensors.

4.1. LISTENING ROOM

As a "rst approach, power spectral density was measured at the error sensors for di!erent
con"gurations. The primary signals to be cancelled were random noise and engine noise.
These experiments allowed one to test the performance of the algorithms at the di!erent
control points, before analyzing the area around each error sensor. Consider a control
system with 1 primary source, 1 secondary source and 2 error sensors (1 : 1 : 2 con"guration).
Two error sensors are located on both sides of the headrest and S

y
"40 cm (distance

between them). The secondary source is placed at (2)4, 2)3, 1)3) m. The disturbance signal is
engine noise (obtained at 1200 r.p.m., repetitive signal with harmonics of 20 Hz). The power
spectral density of the signals measured at both error sensors by using the MELMS can be
seen in Figure 4. There was a general attenuation around 30 dB at 100 and 120 Hz
harmonics, although these reductions tend to decrease at very low frequencies because of
the poor loudspeaker responses at those frequencies and around 150 Hz also due to the
e!ect of the sampling and reconstruction "lters.

In a second experiment, two secondary sources were used in order to cancel random noise
(1 : 2 : 2 con"guration). The power spectral density obtained at one error sensor after having
used the three algorithms described in section 2 is shown in Figure 5. The ANC system
achieves reduction in random noise levels at the error sensor for almost all the frequencies
considered. In the same way, noise reduction levels obtained with the MELMS, LMMS and
scanning error-LMS algorithms are very similar, see Figure 5(a)} (c).



Figure 4. Power spectral density of the signal measured at the error sensors using a 1 : 1 : 2 system in the real
room before the ANC system operation (solid line) and after the ANC system operation (dashed line). Engine noise
and MELMS algorithm. Cut-o! frequency of the "lters: 150 Hz. Order of the FIR "lters used on the controller was
16. (Arbitrary units) (De-Diego and Gonzalez).
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The next evaluation of the multichannel system used four error sensors and two
secondary sources; this con"guration is called a 1 : 2 : 4 system. The loudspeakers and
microphones arrangement is shown in Figure 3 (S

z
"0 in this case). Comparing the power

spectral density obtained by using the scanning error-LMS and LMMS algorithms with the
MELMS algorithm a very similar behavior is observed, not only for engine noise, see
Figure 6(a)} (c) but also for random noise, see Figure 6(d)} (f ).

By comparing Figure 5(a)}(c) with Figure 6(d)}(f ), it can be observed how random noise
levels are reduced in both con"gurations using the algorithms under study. However, the
noise levels are slightly di!erent. In order to justify this di!erence, it must be noted that the
working conditions were di!erent in both experiments. The number and arrangement of
error sensors were not the same, the experiments were carried out at di!erent dates and the
noise levels that are shown were measured at di!erent error sensors. This fact proves that
the performance of active noise control systems is greatly dependent on the actual system
con"guration. Another important aspect that can be addressed in this experiment is which
con"guration can be considered the best one. Minko! [23] proved that maximum
error-reduction performance is achieved when the number of secondary sources is equal to
the number of error sensors (1 : 2 : 2 con"guration in the present case), provided the resulting
square matrix of transfer functions between the secondary sources and the error sensors is
well conditioned, which can be assumed in this case. On the other hand, rectangular (1 : 2 : 4)
con"gurations can provide good reduction depending on other factors. The minimum mean
square error for the cost function (obtained by the Wiener solution) for square systems
depends only on the statistical properties of the reference and primary signals, whereas for
rectangular systems, the transfer functions also come into play, not guaranteeing small
residual errors. In the present experiment, both con"gurations provided good performance
at the control points. Therefore, other properties such as availability of computational
resources or the size and shape of the quite zones may allow one to choose between both
con"gurations.

Tests were also performed using the MELMS, LMMS and scanning error-LMS
algorithms in order to measure noise reduction levels in an area around the error sensors.
For an increasing number of error sensors, it has been observed that quiet zones can
become larger when error sensors are placed quite near (spacing used is less than 0)1j, where



Figure 5. Power spectral density of the random noise signal measured at one error sensor using a 1 : 2 : 2 system
in the real room before the ANC system operation (** line) and after the ANC system operation (} } }} line). (a)
MELMS (b) LMMS and (c) scanning error algorithms. Cut-o! frequency of the "lters: 150 Hz. The order of the
FIR "lters used on the controller was 90. (arbitrary units) (De-Diego and Gonzalez).
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j is the acoustic wavelength, for a reduction of up to 10 dB [16]) and they are moved further
away from the secondary sources. Furthermore, Joseph et al. [4] pointed out that when
error sensors are further away from the secondary source at a given frequency, the size of the
zone of quiet become larger, approaching one-tenth of the wavelength of diameter limiting
value. Moreover, Abbott [27] investigated how acoustical factors can limit ANC systems
performance considering two simple noise "eld models. An interesting result of the
simulations, which is related to the radial extent of the zone of quiet in a di!use "eld with
the secondary source located more than one-"fth of a wavelength from the primary source,
showed that the high noise reduction performance is only obtained for a volume whose
characteristic dimension is approximately one-tenth of a wavelength at the control point. It
was also found that it is necessary to utilize multiple secondary sources in order to increase
the quiet zone volume obtainable with a single secondary source. These experimental and
simulated results can represent a good reference to predict to some extent the e$ciency of
the ANC system con"guration in order to create a comfortable listening area.

Zones of quiet obtained with di!erent error sensor arrangements for a 1 : 2 : 4
con"guration are shown in Figures 7}9. Primary signals were, respectively, a single 100 Hz
frequency, engine noise and random noise. Number and positions of error sensors and



Figure 6. Power spectral density of the signal measured at one error sensor using a 1 : 2 : 4 system in the real
room before the ANC system operation (** line) and after the ANC system operation (} } } } line). Engine noise
((a)}(c)) and random noise ((d)}(f )), using, respectively, MELMS, scanning error-LMS and LMMS algorithms
(arbitrary units) (De-Diego and Gonzalez).
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secondary loudspeakers were chosen because it was observed that other ANC system
con"gurations (1 : 1 : 2 and 1 : 2 : 2) provided worse results.

In Figure 7, MELMS and LMMS algorithms are used to cancel a 100 Hz pure tone in
a 1 : 2 : 4 con"guration. Loudspeakers were located at the same x}y plane (1)2 m in height),
the secondary sources closer to the seat and on both sides of the primary source.



Figure 7. Attenuations achieved in a 1 : 2 : 4 system at error sensors plane after the ANC system operation using
the MELMS and the LMMS algorithms in order to cancel a 100 Hz tone: (a) noise levels before cancellation, (b)
MELMS algorithm results and (c) LMMS algorithm results. Circles show relative sensors position. Real room
(De-Diego and Gonzalez).
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Microphones were situated on the loudspeakers diaphragm plane; however, not all of them
picked up the same acoustic pressure, di!erences were under 6 dB; see Figure 7(a). It was
experimentally tested that this arrangement of transducers is optimal compared with other
1 : 2 : 4 con"gurations in terms of the quiet zone obtained at the plane of the listener ears.
Some reasons seem to justify this fact: all the error microphones are on the same x}y plane
(z"1)2 m, listener ears plane) and spacing between them is around 0)1j at 100 Hz; therefore
they are quite close together to provide a useful-size zone of quiet. Furthermore, secondary
sources (symmetrically located around the primary source) have a suitable location in order
to excite those acoustic modes also excited by the primary source [3]. Finally, due to the
symmetrical con"guration of the system elements, the output acoustic power of the
loudspeakers is quite similar, avoiding excessive power requests in the secondary sources
which could produce undesirable non-linear e!ects. Noise reduction levels achieved by
using both algorithms are shown in Figure 7. No remarkable di!erences were perceived in
the quiet zones. Circles show error microphones positions. It can be seen in Table 2 that the



TABLE 2

Acoustic pressure levels measured at error microphones after
cancellation (relative to the lowest pressure level); system, 1:2:4;

listening room; cut-o+ frequency of 150 Hz

Microphone MELMS (dB) LMMS (dB)

Front right 0 1)2
Front left 1)9 0)37
Rear right 0 1)6
Rear left 1)9 1)6

Figure 8. Attenuations achieved in a 1 : 2 : 4 system after the ANC system operation in order to cancel random
noise using: (a) the MELMS algorithm or (b) the LMMS algorithm. Real room (De-Diego and Gonzalez).
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MELMS algorithm strives to reduce acoustic pressure at microphones with higher levels
(the right-side ones), as long as the LMMS algorithm achieves more uniform "nal levels.
Notice that the zones of quiet attenuation are computed as the di!erence between the level
of the acoustic "eld before and after the ANC system operation. In Figure 7(b) and 7(c), two
high attenuation zones can be distinguished; these zones would probably join to form
a larger single one by placing the error microphones closer. However, it has to be
considered that error microphones should not disturb the listener's head motion. The size of
the 10 dB zone of quiet obtained is larger than the acoustic "eld area represented in Figure
7(b) and 7(c) (approximately 84]84 cm2, which has a diameter of a quarter of the working
wavelength). Maximum noise reduction levels reach 27 dB. In fact, this "nal arrangement of
microphones optimizes the listening area where a listener can move his head without
noticing that the noise level increases.

Quiet zones were measured for the same 1 : 2 : 4 con"guration with random noise signals,
see Figure 8. The acoustic "eld before cancellation was quiet uniform. Figure 8 shows the
attenuation achieved in the monitored area by using the MELMS and LMMS algorithms.
Maximum attenuation levels are lower than those of the previous example (see Figure 7)
because random noise produces a more complex "eld. Therefore, more loudspeakers and



Figure 9. Attenuations achieved in a 1 : 2 : 4 system at di!erent z planes after the ANC system operation using
the MELMS algorithm in order to cancel car engine noise. (a) z"0 cm plane, (b) z"20 cm plane, closest to the
head, (c) z"40 cm plane. Real room (De-Diego and Gonzalez).
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error sensors, a longer convergence time interval and a larger number of coe$cients on the
adaptive controller are needed in order to obtain similar performances in both experiments.
Maximum noise reduction levels in the region were around 16 dB; whereas the average
attenuation of the 100 Hz acoustic "eld was over 20 dB; see Figure 7. However, the 10 dB
attenuation quiet zone is again large enough to "ll the monitored area. It has to be noted
that the algorithms have remained stable in spite of the presence of people moving inside the
room and uncorrelated noises from other sources.

Finally, in order to test the performance of the system when the listener's head moves
vertically, attenuation at di!erent horizontal planes has been measured. Since it is desired to
control actively the acoustic "eld of a volume in space, a di!erent arrangement of
transducers of the 1 : 2 : 4 system was shown to be required. After some laboratory trials, the
"nal chosen placement of the loudspeakers, microphones and the seat was that shown in
Figure 3 with S

x
"30 cm, S

y
"40 cm and S

z
"40 cm. In order to achieve more realistic

results, the control system is attempting to cancel out engine noise. The MELMS algorithm
is being used on the controller. All the sources were set in an horizontal plane of 1)2 m
height (z"20 cm) which corresponds to the listener's head position. The z-co-ordinate



Figure 10. Power spectral density of the signal measured at one error sensor using a 1 : 2 : 2 system in
semi-anechoic chamber before the ANC system operation (** line), after the ANC system operation (} } } } line)
using the MELMS. (a) Engine noise and (b) random noise. Cut-o! frequency of the "lters: 150 Hz (arbitrary units)
(De-Diego and Gonzalez).

ALGORITHMS FOR ACTIVE NOISE CONTROL 631
origin is now taken at 1)2 m height. Thus, the front error sensors are located at z"0 cm and
the rear ones at z"40 cm. Figure 9 shows attenuation measured at three di!erent
horizontal planes. Results demonstrate that very meaningful reductions are obtained at the
measurement plane closest to the plane where the listener ears were located; see Figure 9(b).
The more quiet area (the darkest one) in this "gure is centered, as could be desired. The
other two measured planes present darkest areas that are not centered. This fact is due to
the asymmetries of the system. If the listener moves his head inside the controlled volume
a slight change of the perceived noise level can be appreciated. In any case the extent of the
volume of quiet is large enough to allow these movements. Level reductions up to 24 dB
with a mean value of around 20 dB are achieved at the three planes.

4.2. SEMI-ANECHOIC CHAMBER

A complete set of measurements was also carried out in a semi-anechoic chamber in order
to know how the acoustic characteristics of an enclosure determine the performance of the
ANC system. The performance comparison of the practical system in the listening room and
in the semi-anechoic chamber makes it possible to somewhat predict the e!ect of an ANC
system in an arbitrary room. Noise reduction signi"cantly improves in the semi-anechoic
chamber due to the acoustic "eld simplicity. Figure 10 shows the cancellation of engine and
random noise when using a 1 : 2 : 2 system. Results were obtained at one error sensor by
means of the MELMS algorithm. Attenuation higher than 30 dB was achieved at some
frequencies. The power spectral density of random noise before and after control in both
environments for a 1 : 2 : 2 system by using the MELMS can be observed in Figures 5(a)
and 10(b).

Figure 11 shows the residual "eld that results after cancelling engine noise with a 1 : 2 : 4
system by using the MELMS and the LMMS algorithms on the controller. Despite
increasing the working frequency range (cut-o! frequency of 230 Hz), attenuation over
20 dB (higher reductions than in the listening room) has been achieved. Although zones of
quiet obtained by using both algorithms do not show the same shape, acoustic noise levels



Figure 11. Attenuations achieved using a 1 : 2 : 4 system at error sensors plane after the ANC system operation
in order to cancel car engine noise using: (a) LMMS algorithm and (b) MELMS algorithm. Semi-anechoic
chamber. Cut-o! frequency of the "lters: 240 Hz (De-Diego and Gonzalez).
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after cancellation are very similar. A more uniform residual acoustic "eld is achieved again
by using the LMMS algorithm.

5. CONCLUSIONS

A multichannel system applied to a laboratory prototype for local active noise control
was described. The known MELMS (multichannel version of the "ltered-X LMS), LMMS
and scanning error-LMS algorithms have been developed and tested on the controller.
Experimental veri"cation tests show a similar performance of the algorithms in some
aspects; in particular, all of them are robust and present similar convergence rates. LMMS
and scanning error-LMS algorithms reduce the computational load compared to the
MELMS algorithm, since they use only one error signal at each algorithm iteration,
whereas MELMS uses all the error signals. However, it has to be noted that the LMMS
algorithm has to compute all the error signal powers in order to look for the maximum.
This fact determines that its computational cost saving depends on the number of error
sensors. If this number increases, the computational complexity of the LMMS will be
similar to the MELMS complexity. On the other hand, as can be concluded from the results,
the LMMS algorithm also provides a more uniform residual "eld compared with the
MELMS and the scanning error-LMS. This behavior could have been expected since its
optimization strategy is based on the minimization of the maximum error signal level.

Experiments with di!erent con"gurations and di!erent numbers of loudspeakers and
error sensors were conducted. The position of the loudspeakers and sensors has been shown
to be very important to achieve "nally a certain acoustic "eld in the controlled area. Results
demonstrate the possibility to adjust the size and quality of the quiet zones by optimizing
the number and position of secondary sources and error sensors. From the experiments the
optimum con"guration of the local system for a single listener would be a 1 : 2 : 4
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con"guration with the error sensors located at di!erent z planes in order to achieve larger
volume of quiet and therefore allow three-dimensional movements of the listener's head.
The 10 dB zones of quiet at each z plane are shown to be larger than those represented in the
"gures, which means at least an area of 80]45 cm2. The 10 dB zone of quiet generally
becomes larger if the error sensors are closer, but the error sensors must not disturb head
movements. Head motion and the zone of quiet extension can be improved together by
minimizing the pressure at point nearer to the listener head, rather than at an error
microphone placed further away. This method, which was reported in reference [5], is left as
a topic of future research.

Finally, the system has been shown to be able to achieve noise reductions around the
headrest of a seat placed inside an enclosure. Di!erent kinds of noise, single frequencies,
random noise and engine noise, have been attenuated. Meaningful convergence rates and
stability were achieved on the ANC system in all the experiments.
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